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Introduction
l Parallel computers go as far back as the 

50s and early 60s.
l The “connection machine” had up to 

65536 processors (CM-1,2)  

Thinking Machines CM-1
at the Computer History
Museum in Mountain View.
(from Wikipedia)



Introduction
l The desktop revolution however occurred with serial CPUs (and 

PCs remain largely serial to date)
l Fuelled by the games industry, graphics adaptors have become 

very powerful and are now using massively parallel graphical 
processing units (GPUs)

NVIDIA® GRID K2, 2x Kepler 
GPUs, 3072 cores total, 8GB 
GDDR5 memory.
(Image from NVIDIA)



The beginnings of GPGPU
l Performance seekers started to (mis)use GPUs for 

general purpose computation:
l First examples around 2004, e.g.

- neural networks
- surface waves

l Using Cg shader language (OpenGL) or HLSL (Direct 
X)

l Impressive speedups of 20x and more over CPU based 
simulations



CUDA



The real Game-Changer:  
Nvidia® CUDATM

l CUDATM= “Common Unified Device Architecture”

l It was introduced by NVIDIA® to allow main stream 
developers to use massively parallel graphics chips for 
GPGPU without the restrictions of shaders

l The first CUDA SDK was released Feb 2007 
(according to Wikipedia)

l CUDATM is supported on all newer NVIDIA cards

l More general alternative: OpenCL



SIMT programming

__global__ void saxpy(int N, float a, float *x, float *y)
{

int i = blockIdx.x*blockDim.x+ threadIdx.x;
if(i<N) {

y[i] = a*x[i] + y[i];
}

}



The CUDATM API
l Each thread executes what is called a “kernel”, defined 

by a C-like function

l This is a Single-Instruction-Multiple-Data (SIMD) 
environment

l Kernels within a blocks can share memory and can be 
synchronised

l Different blocks may execute in parallel or 
consecutively

l Maximal block sizes typically 512 (1024) threads

l Grid sizes up to 65535 x 65535 blocks



GPU architecture



What happens on the GPU

GPU

x=1 x=2 …

x=1 x=2 …

x=1 x=2 …

… (e.g. 16)

l GPUs have several 
streaming multi-processors 
(typically 2-16)

l Each block occupies one 
multi-processor (but 
several may occupy the 
same)

l Within the block, threads 
are executed in (half) warp 
sizes of (16) 32

l Other thread warps are 
swapped in and out



Kernel /
GPU

CUDA memory architecture

Program /
CPU

Cache/Registers

Random Access 
Memory (RAM)

Graphics adaptor

Host computer

Device memoryDevice memory

Constant memory

Texture memory

GPU

Shared memory

Registers

Local 
memory



Example: Insect olfaction model
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Hand-tuned network simulation 2009

T. Nowotny, 
WCCI 2010 Barcelona

NVIDIA Tesla
C870,
240 cores



GeNN



GeNN: GPU enhanced Neuronal 
Network simulator
l Based on code generation
l Provides a simple C++ API for specifying a neuronal 

network of interest
l Generates optimised C++ and CUDA code for the model 

and for the detected hardware at compile time (e.g. 
grid/block organisation, HW capability, model parameters)

l GeNN can offer a large variety of different models – only 
the used ones actually enter the generated code

l Users can add their own neuron models
l The generated code is compiled with the native NVidia 

compiler (and all its optimisations).



GeNN overview



Design choices
§ The user has maximal control: 

§ The user defines all equations/update code
§ GeNN generates kernels and data transfer 

‘convenience functions’
§ The user decides what data to transfer and when
§ The user does their own I/O to disk etc.

§ The user can interfere:
§ By providing neuron, synapse, learning models in 

the form of ‘integration time-step code’
§ Generated code is human-readable & can be 

‘interfered’ with



Example GeNN model code
Definition of a neuron model

Population creation



New Developments



GPU random number generation
__global__ void initializeDevice()
{
const unsigned int id = 64 * blockIdx.x +

threadIdx.x;
if (id < 1000) {
curand_init(1234, id, 0, &dd_rng[id]);

...

dd_VE[id] = curand_uniform(&dd_rng[id]); }
}



Initialising ‘fixed probability’ 
connectivity

§ Whether there is a 
connection between any 
pair of neurons can be 
modelled as Bernoulli 
Distribution

§ 6.4x109 ‘dice’ throws if 
connecting 80x103

neurons to themselves
§ Inefficient for sparse 

connectivity



Initialising ‘fixed probability’ connectivity
§ Alternative is to sample from the geometric distribution 

Geom[p] 
§ This distribution describes how many Bernoulli trials 

until the next success
§ The geometric distribution can be sampled in constant 

time by inverting the cumulative density function (CDF) 
of its equivalent continuous distribution (the 
exponential distribution) to obtain for the ‘distance’ to 
the next existing synapse

Devroye, L. (1986). Non-Uniform Random Variate Generation. New York: Springer.



Initialising ‘fixed probability’ 
connectivity

§ Generating fixed probability connectivity can now be 
performed entirely in parallel by initializing each row of 
connectivity using an independent CUDA thread



Example GeNN connectivity model
class FixedProbability: public InitSparseConnectivitySnippet::Base
{
public:

DECLARE_SNIPPET(FixedProbability, 1);

SET_ROW_BUILD_CODE(
"const scalar u = $(gennrand_uniform);\n"
"prevJ += (1 + (int)(log(u) * $(probLogRecip)));\n"
"if(prevJ < $(num_post)) {\n"
" $(addSynapse, prevJ);\n"
"}\n"
"else {\n"
" $(endRow);\n"
"}\n");

SET_ROW_BUILD_STATE_VARS({{"prevJ", "int", -1}});

SET_PARAM_NAMES({"prob"});
SET_DERIVED_PARAMS({{"probLogRecip",

[](const std::vector<double> &pars, double)
{

return 1.0 / log(1.0 - pars[0]);
}}});

};



Example GeNN simulation code



Microcolumn Benchmark



Model
● 1mm3 of cortex
● 80×103 (LIF) neurons
● 0.3×109 (static) synapses
● Probabilistic connectivity
● Weights and delays sampled from 

normal distributions
● Recent benchmark

○ NEST on HPC - 0.33× real-time 
(25kW)

○ SpiNNaker - 0.05× real-time 
(277W)

Van Albada, S. J., Rowley et al. (2018). Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the 
Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model. 1–20.

Potjans, T. C., & Diesmann, M. (2012). The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-
Scale Spiking Network Model. Cerebral Cortex

Jamie Knight



Simulation performance
● Using latest Volta 

GPUs, GeNN is 
faster than HPC

● Consumer GPUs still 
faster than 
SpiNNaker and offer 
significant speedup 
over single CPU core

(Time not spent in CUDA 
kernels)



Initialisation performance
● Rapid initialisation 

of simulations is 
important

● Although 
initialisation also 
scales strongly on 
HPC cluster, GPU 
initialisation is still 
faster



Energy efficiency

● Latest Volta GPU uses an 
order of magnitude less 
energy than CPU-based 
HPC and SpiNNaker

● Even though it’s 
significantly slower, 
Jetson TX2 remains very 
energy efficient

Device Simulation energy
[kWh]

GeForce 1050 Ti 0.0051

Jetson TX2 0.00078

Tesla K40c 0.0028

Tesla V100 (estimated) 0.0012

SpiNNaker 0.017

HPC (lowest energy) 0.012



Publication



The GeNN ‘ecosystem’



Overview
Python

C++
CUDA/C++

CUDA backendC++ backend

GeNN

SpineML2GeNNBrian2GeNN PyGeNN

TensorGeNNPyNN GeNN

Brian2 SpineCreator PyNN TensorFlow



SpineML is an XML-based description format for 
networks of point neurons

It is a proposed extension of the NineML format, 
including the description of neural dynamics, 
network structure, and experimental procedures.

SpineML acts as an exchange format between 
creation tools and simulators, as well as between 
collaborators working on a shared model
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Richmond P, Cope A, Gurney K, Allerton DJ. "From Model Specification to Simulation of 
Biologically Constrained Networks of Spiking Neurons" Neuroinformatics. 2013

Courtesy of Dr. Alex Cope



SpineCreator is one tool that can be used to 
author SpineML models
A Graphical User Interface allows models to be 
specified without any programming
Some features:
Graphing
3d visualisation
Extensible simulator support
Version control support

Available at 
https://github.com/SpineML/SpineCreator

SpineCreator
Courtesy of Dr. Alex Cope



SpineML can use code generation for simulator support, so it is very easy to 
add support for GeNN

XSLT translation scripts transform the model into GeNN user files, and the 
GeNN standard toolchain compiles and runs the simulation

Support for new neuron types (and soon synapses and weight update rules) 
is supported through XSLT translation to GeNN system files

SpineML and GeNN
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Brian2GeNN interface 
Brian is a popular simulator for neuronal networks 
(http://briansimulator.org/) 

Brian 2 is entirely code-generation based

Users are able to choose target devices, 
including Python (as before), C/C++, Android and 
GPU/GeNN

http://briansimulator.org/


from brian2 import *

from brian2.devices.genn import *

set_device('genn');

##### Define the model

tau = 10*msecond

eqs = '’’dV/dt = (-40*mV-V)/tau : volt # (unless-refractory)'''

threshold = 'V>-50*mV'

reset = 'V=-60*mV'

refractory = 5*msecond

N = 1000

##### Generate genn code

G = NeuronGroup(N, eqs, reset=reset, threshold=threshold, 

name='gp')

M = SpikeMonitor(G)

G2 = NeuronGroup(1, eqs, reset=reset, threshold=threshold, 

name='gp2')

# Run the network for 0 seconds to generate the code

net = Network(G, M, G2)

net.run(1*second)

BRIAN2



Brian2GeNN

Available on bioarxiv



Brian2GeNN performance

§ Very large models can be simulated on single GPUs
§ Tesla GPUs perform well, even when double-precision accuracy is required
§ When models are large enough, higher performance can be achieved by 

parallelising synaptic update over incoming spikes rather than 
postsynaptic neurons.



Future
§ New backends

§ OpenCL
§ Intel ISPC

§ Going larger
§ Support for NVLink multi-GPU systems 
§ Support for GPUDirect RDMA

§ Going smaller
§ Low-precision types reduce load on memory and memory 

bandwidth and offer increased throughout on newer devices
§ New backends may allow us to efficiently target devices too 

small to have an NVIDIA GPU



Some Conclusions
l Using a C++/CUDA code generation approach has 

several advantages:
- Model specific optimisations at compile time
- Hardware specific optimisations at compile time
- Can provide unlimited number of different models but 

actual simulations stay lean and mean

l GeNN is freely extendible with few constraints
l Low level code is accessible if desired/needed
l New hardware capability can be accommodated
l https://github.com/genn-team/genn

https://github.com/genn-team/genn


Other GPU solutions (here: Neural Networks)

l Nageswaran et al. (UC Irvine, 2009): General simulator for Izhikevich neurons 
with delay, optimized for Izhikevich's thalamo-cortical model (C++ library)

l Fidjeland et al. (Imperial, 2010) - Nemo: General simulator for Izhikevich
neurons with delay, optimized for Izhikevich's thalamo-cortical model (C++ 
library)

l Mutch et al. (MIT, 2010) CNS simulator: Simulator for layered “cortical 
networks”, models can be defined by the user (used exclusively through a 
MatLab interface)

l Minkovich et al., (HRL Laboratories LLC, 2013) HRLSim: A High Performance 
Spiking Neural Network Simulator for GPGPU Clusters (LIF & Izhikevich)

l …
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