
GPU enhanced neuronal
networks (GeNN)

BRANDY School
Val di Sole

Introduction
l Parallel computers go as far back as the

50s and early 60s.
l The “connection machine” had up to

65536 processors (CM-1,2)

Thinking Machines CM-1
at the Computer History
Museum in Mountain View.
(from Wikipedia)

Introduction
l The desktop revolution however occurred with serial CPUs (and

PCs remain largely serial to date)
l Fuelled by the games industry, graphics adaptors have become

very powerful and are now using massively parallel graphical
processing units (GPUs)

NVIDIA® GRID K2, 2x Kepler
GPUs, 3072 cores total, 8GB
GDDR5 memory.
(Image from NVIDIA)

The beginnings of GPGPU
l Performance seekers started to (mis)use GPUs for

general purpose computation:
l First examples around 2004, e.g.

- neural networks
- surface waves

l Using Cg shader language (OpenGL) or HLSL (Direct
X)

l Impressive speedups of 20x and more over CPU based
simulations

CUDA

The real Game-Changer:
Nvidia® CUDATM

l CUDATM= “Common Unified Device Architecture”

l It was introduced by NVIDIA® to allow main stream
developers to use massively parallel graphics chips for
GPGPU without the restrictions of shaders

l The first CUDA SDK was released Feb 2007
(according to Wikipedia)

l CUDATM is supported on all newer NVIDIA cards

l More general alternative: OpenCL

SIMT programming

__global__ void saxpy(int N, float a, float *x, float *y)
{

int i = blockIdx.x*blockDim.x+ threadIdx.x;
if(i<N) {

y[i] = a*x[i] + y[i];
}

}

The CUDATM API
l Each thread executes what is called a “kernel”, defined

by a C-like function

l This is a Single-Instruction-Multiple-Data (SIMD)
environment

l Kernels within a blocks can share memory and can be
synchronised

l Different blocks may execute in parallel or
consecutively

l Maximal block sizes typically 512 (1024) threads

l Grid sizes up to 65535 x 65535 blocks

GPU architecture

What happens on the GPU

GPU

x=1 x=2 …

x=1 x=2 …

x=1 x=2 …

… (e.g. 16)

l GPUs have several
streaming multi-processors
(typically 2-16)

l Each block occupies one
multi-processor (but
several may occupy the
same)

l Within the block, threads
are executed in (half) warp
sizes of (16) 32

l Other thread warps are
swapped in and out

Kernel /
GPU

CUDA memory architecture

Program /
CPU

Cache/Registers

Random Access
Memory (RAM)

Graphics adaptor

Host computer

Device memoryDevice memory

Constant memory

Texture memory

GPU

Shared memory

Registers

Local
memory

Example: Insect olfaction model

n1

n2

Block 1 Block 2

Block 3 Block 4

Gr
id

 1

dV
dt

= −V ...

nsyn

Synapse Blocks

Gr
id

 2

Isyn= …

Model

Hand-tuned network simulation 2009

T. Nowotny,
WCCI 2010 Barcelona

NVIDIA Tesla
C870,
240 cores

GeNN

GeNN: GPU enhanced Neuronal
Network simulator
l Based on code generation
l Provides a simple C++ API for specifying a neuronal

network of interest
l Generates optimised C++ and CUDA code for the model

and for the detected hardware at compile time (e.g.
grid/block organisation, HW capability, model parameters)

l GeNN can offer a large variety of different models – only
the used ones actually enter the generated code

l Users can add their own neuron models
l The generated code is compiled with the native NVidia

compiler (and all its optimisations).

GeNN overview

Design choices
§ The user has maximal control:

§ The user defines all equations/update code
§ GeNN generates kernels and data transfer

‘convenience functions’
§ The user decides what data to transfer and when
§ The user does their own I/O to disk etc.

§ The user can interfere:
§ By providing neuron, synapse, learning models in

the form of ‘integration time-step code’
§ Generated code is human-readable & can be

‘interfered’ with

Example GeNN model code
Definition of a neuron model

Population creation

New Developments

GPU random number generation
__global__ void initializeDevice()
{
const unsigned int id = 64 * blockIdx.x +

threadIdx.x;
if (id < 1000) {
curand_init(1234, id, 0, &dd_rng[id]);

...

dd_VE[id] = curand_uniform(&dd_rng[id]); }
}

Initialising ‘fixed probability’
connectivity

§ Whether there is a
connection between any
pair of neurons can be
modelled as Bernoulli
Distribution

§ 6.4x109 ‘dice’ throws if
connecting 80x103

neurons to themselves
§ Inefficient for sparse

connectivity

Initialising ‘fixed probability’ connectivity
§ Alternative is to sample from the geometric distribution

Geom[p]
§ This distribution describes how many Bernoulli trials

until the next success
§ The geometric distribution can be sampled in constant

time by inverting the cumulative density function (CDF)
of its equivalent continuous distribution (the
exponential distribution) to obtain for the ‘distance’ to
the next existing synapse

Devroye, L. (1986). Non-Uniform Random Variate Generation. New York: Springer.

Initialising ‘fixed probability’
connectivity

§ Generating fixed probability connectivity can now be
performed entirely in parallel by initializing each row of
connectivity using an independent CUDA thread

Example GeNN connectivity model
class FixedProbability: public InitSparseConnectivitySnippet::Base
{
public:

DECLARE_SNIPPET(FixedProbability, 1);

SET_ROW_BUILD_CODE(
"const scalar u = $(gennrand_uniform);\n"
"prevJ += (1 + (int)(log(u) * $(probLogRecip)));\n"
"if(prevJ < $(num_post)) {\n"
" $(addSynapse, prevJ);\n"
"}\n"
"else {\n"
" $(endRow);\n"
"}\n");

SET_ROW_BUILD_STATE_VARS({{"prevJ", "int", -1}});

SET_PARAM_NAMES({"prob"});
SET_DERIVED_PARAMS({{"probLogRecip",

[](const std::vector<double> &pars, double)
{

return 1.0 / log(1.0 - pars[0]);
}}});

};

Example GeNN simulation code

Microcolumn Benchmark

Model
● 1mm3 of cortex
● 80×103 (LIF) neurons
● 0.3×109 (static) synapses
● Probabilistic connectivity
● Weights and delays sampled from

normal distributions
● Recent benchmark

○ NEST on HPC - 0.33× real-time
(25kW)

○ SpiNNaker - 0.05× real-time
(277W)

Van Albada, S. J., Rowley et al. (2018). Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the
Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model. 1–20.

Potjans, T. C., & Diesmann, M. (2012). The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-
Scale Spiking Network Model. Cerebral Cortex

Jamie Knight

Simulation performance
● Using latest Volta

GPUs, GeNN is
faster than HPC

● Consumer GPUs still
faster than
SpiNNaker and offer
significant speedup
over single CPU core

(Time not spent in CUDA
kernels)

Initialisation performance
● Rapid initialisation

of simulations is
important

● Although
initialisation also
scales strongly on
HPC cluster, GPU
initialisation is still
faster

Energy efficiency

● Latest Volta GPU uses an
order of magnitude less
energy than CPU-based
HPC and SpiNNaker

● Even though it’s
significantly slower,
Jetson TX2 remains very
energy efficient

Device Simulation energy
[kWh]

GeForce 1050 Ti 0.0051

Jetson TX2 0.00078

Tesla K40c 0.0028

Tesla V100 (estimated) 0.0012

SpiNNaker 0.017

HPC (lowest energy) 0.012

Publication

The GeNN ‘ecosystem’

Overview
Python

C++
CUDA/C++

CUDA backendC++ backend

GeNN

SpineML2GeNNBrian2GeNN PyGeNN

TensorGeNNPyNN GeNN

Brian2 SpineCreator PyNN TensorFlow

SpineML is an XML-based description format for
networks of point neurons

It is a proposed extension of the NineML format,
including the description of neural dynamics,
network structure, and experimental procedures.

SpineML acts as an exchange format between
creation tools and simulators, as well as between
collaborators working on a shared model

6SLQH&UHDWRU

2WKHU�FUHDWLRQ�WRRO��H�J��
WH[W�HGLWRU�

8!

%5$+06

3\11

&UHDWLRQ ([FKDQJH 6LPXODWLRQ

SpineML

For more details see:
Richmond P, Cope A, Gurney K, Allerton DJ. "From Model Specification to Simulation of
Biologically Constrained Networks of Spiking Neurons" Neuroinformatics. 2013

Courtesy of Dr. Alex Cope

SpineCreator is one tool that can be used to
author SpineML models
A Graphical User Interface allows models to be
specified without any programming
Some features:
Graphing
3d visualisation
Extensible simulator support
Version control support

Available at
https://github.com/SpineML/SpineCreator

SpineCreator
Courtesy of Dr. Alex Cope

SpineML can use code generation for simulator support, so it is very easy to
add support for GeNN

XSLT translation scripts transform the model into GeNN user files, and the
GeNN standard toolchain compiles and runs the simulation

Support for new neuron types (and soon synapses and weight update rules)
is supported through XSLT translation to GeNN system files

SpineML and GeNN

*8,�&UHDWRU

2WKHU�FUHDWLRQ�WRRO��H�J��
WH[W�HGLWRU�

8!

&UHDWLRQ ([FKDQJH *38�6LPXODWLRQ

8!

1HXURQV

8!

0RGHO

([SHULPHQW

�EE

XVHU0RGHO�FF

�EE

XVHU6LPXODWLRQ�FF

�I[Ig<jI�gk[[Ig��
XIg[IYh��P]hj�<[G�
GIpQEI�E]GI

JHQHUDWH$OO�FF

JHQHUDWH$OO

UXQQHU�FF

'HYLFH�
&RGH�
�*38�

+RVW�
&RGH�
�&38�

QHXURQ
V\QDSVH�
UXQQHU

���LQFOXGH

���FRPSLOH

XVHU6LPXODWLRQ

���LQFOXGH

���LQFOXGH

���H[HFXWH

���FRPSLOH

Courtesy of Dr. Alex Cope

Brian2GeNN interface
Brian is a popular simulator for neuronal networks
(http://briansimulator.org/)

Brian 2 is entirely code-generation based

Users are able to choose target devices,
including Python (as before), C/C++, Android and
GPU/GeNN

http://briansimulator.org/

from brian2 import *

from brian2.devices.genn import *

set_device('genn');

Define the model

tau = 10*msecond

eqs = '’’dV/dt = (-40*mV-V)/tau : volt # (unless-refractory)'''

threshold = 'V>-50*mV'

reset = 'V=-60*mV'

refractory = 5*msecond

N = 1000

Generate genn code

G = NeuronGroup(N, eqs, reset=reset, threshold=threshold,

name='gp')

M = SpikeMonitor(G)

G2 = NeuronGroup(1, eqs, reset=reset, threshold=threshold,

name='gp2')

Run the network for 0 seconds to generate the code

net = Network(G, M, G2)

net.run(1*second)

BRIAN2

Brian2GeNN

Available on bioarxiv

Brian2GeNN performance

§ Very large models can be simulated on single GPUs
§ Tesla GPUs perform well, even when double-precision accuracy is required
§ When models are large enough, higher performance can be achieved by

parallelising synaptic update over incoming spikes rather than
postsynaptic neurons.

Future
§ New backends

§ OpenCL
§ Intel ISPC

§ Going larger
§ Support for NVLink multi-GPU systems
§ Support for GPUDirect RDMA

§ Going smaller
§ Low-precision types reduce load on memory and memory

bandwidth and offer increased throughout on newer devices
§ New backends may allow us to efficiently target devices too

small to have an NVIDIA GPU

Some Conclusions
l Using a C++/CUDA code generation approach has

several advantages:
- Model specific optimisations at compile time
- Hardware specific optimisations at compile time
- Can provide unlimited number of different models but

actual simulations stay lean and mean

l GeNN is freely extendible with few constraints
l Low level code is accessible if desired/needed
l New hardware capability can be accommodated
l https://github.com/genn-team/genn

https://github.com/genn-team/genn

Other GPU solutions (here: Neural Networks)

l Nageswaran et al. (UC Irvine, 2009): General simulator for Izhikevich neurons
with delay, optimized for Izhikevich's thalamo-cortical model (C++ library)

l Fidjeland et al. (Imperial, 2010) - Nemo: General simulator for Izhikevich
neurons with delay, optimized for Izhikevich's thalamo-cortical model (C++
library)

l Mutch et al. (MIT, 2010) CNS simulator: Simulator for layered “cortical
networks”, models can be defined by the user (used exclusively through a
MatLab interface)

l Minkovich et al., (HRL Laboratories LLC, 2013) HRLSim: A High Performance
Spiking Neural Network Simulator for GPGPU Clusters (LIF & Izhikevich)

l …

2012-2016 2017-2021

2015-2019

HUMAN FRONTIERS
SCIENCE PROGRAM

Acknowledgments

Thank you!

2008-2011

2015-2021

