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Introduction

. Parallel computers go as far back as the
50s and early 60s.

« The “connection machine” had up to
65536 processors (CM-1,2)

Thinking Machines CM-1
at the Computer History

_ Museum in Mountain View.
(from Wikipedia)
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Introduction

. The desktop revolution however occurred with serial CPUs (and
PCs remain largely serial to date)

. Fuelled by the games industry, graphics adaptors have become

very powerful and are now using massively parallel graphical
processing units (GPUs)

NVIDIA® GRID K2, 2x Kepler

GPUSs, 3072 cores total, 8GB
GDDRS5 memory.

(Image from NVIDIA) w
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The beginnings of GPGPU

Prof. Thomas Nowotny (@drtnowotny)

Performance seekers started to (mis)use GPUs for
general purpose computation:

First examples around 2004, e.qg.
- neural networks
- surface waves

Using Cg shader language (OpenGL) or HLSL (Direct
X)

Impressive speedups of 20x and more over CPU based
simulations
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CUDA
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The real Game-Changer:
Nvidia® CUDA™

« CUDA™=“Common Unified Device Architecture”

. It was introduced by NVIDIA® to allow main stream

developers to use massively parallel graphics chips for
GPGPU without the restrictions of shaders

. The first CUDA SDK was released Feb 2007
(according to Wikipedia)

. CUDA™ s supported on all newer NVIDIA cards

» More general alternative: OpenCL
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SIMT programming

Grid
Thread Block 0 Thread Block 1 Thread Block 2 Thread Block 3

HHHBHUR

Thread 0 === Thread 5 Thread 0 == = Thread 5 Thread 0 = s Thread 5 Thread 0 = s o= Thread 5

__global  void saxpy(int N, float a, float *x, float *y)
{

int 1 = blockIdx.x*blockDim.x+ threadIdx.Xx;
if(i<N) {
y[i] = a*x[i] + y[i];
}
} us
Prof. Thomas Nowotny (@drtnowotny) i
CCNR and Sussex Neuroscience, School of Engineering and Informatics  of sussEx



The CUDA™ API

Each thread executes what is called a “kernel”, defined
by a C-like function

This is a Single-Instruction-Multiple-Data (SIMD)
environment

Kernels within a blocks can share memory and can be
synchronised

Different blocks may execute in parallel or
consecutively

Maximal block sizes typically 512 (1024) threads
Grid sizes up to 65535 x 65535 blocks
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GPU architecture

SM SM SM
L1 cache L1 cache L1 cache
Shared memory Shared memory Shared memory
Register file Register file Register file
Warp scheduler Warp scheduler Warp scheduler

ALU |ALU |[ALU |ALU | ALU |ALU| |ALU | ALU | ALU |ALU | ALU | ALU| | ALU | ALU |ALU | ALU | ALU | ALU

ALU |ALU |ALU |ALU | ALU |ALU| |ALU | ALU | ALU [ ALU | ALU | ALU| | ALU | ALU |ALU | ALU | ALU | ALU

ALU |ALU [ALU |ALU | ALU | ALU| | ALU | ALU | ALU |ALU | ALU | ALU| |ALU | ALU | ALU | ALU | ALU | ALU

L2 cache

DRAM
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What happens on the GPU

: (e.9. 16)

GPU

. GPUs have several
streaming multi-processors
(typically 2-16)

. Each block occupies one
multi-processor (but
several may occupy the
same)

. Within the block, threads

are executed in (half) warp
sizes of (16) 32

« Other thread warps are

swapped in and out
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CUDA memory architecture
Cache/Regiters

Host computer

GPU

Graphics adaptor
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Example: Insect olfaction model

— inhibition o
excitation N B
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Hand-tuned network simulation 2009
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NVIDIA Tesla
C870,
240 cores

T. Nowotny,
WCCI 2010 Barcelona
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GeNN
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GeNN: GPU enhanced Neuronal
Network simulator

Based on code generation

Provides a simple C++ API for specifying a neuronal
network of interest

Generates optimised C++ and CUDA code for the model
and for the detected hardware at compile time (e.g.
grid/block organisation, HW capability, model parameters)

GeNN can offer a large variety of different models — only
the used ones actually enter the generated code

Users can add their own neuron models
The generated code is compiled with the native NVidia

compiler (and all its optimisations).
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GeNN overview

XYZmodel.cc
1l: include X
l " — XYZsimulation.cc
- — :
enerateALL.cc e
[g J s G — T—
[ generateRunner.cc J e = -
@ g U pr—p
[ generateKernels.cc J s B ALY 8
> . O Q. 7 e
L generateCPU.cc W M. neuronKrnl.cc - =
— - - D e = =9
= synapseKrnl.cc Q.
2: Jcompile > O <
runnerGPU.cc —_— 5: compile
- . 3: execute \ .
generateALL : » | neuronFnct.cc
b & e oD =
Optimise for (i)detected GPU synapseFnct.cc % ; v
Eie ; > = XYZsimulation
(ii)model architecture R EnerChll ec L
() GeNN library source code Stand-alone executable
with both GPU and
(O executable code CPU simulation code
) generated simulator source code "lean & mean"

@ model definition and user source code
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Design choices

= The user has maximal control:
= The user defines all equations/update code
= GeNN generates kernels and data transfer
‘convenience functions’
= The user decides what data to transfer and when
= The user does their own 1/0O to disk etc.

" The user can interfere:
= By providing neuron, synapse, learning models in
the form of ‘integration time-step code’
= Generated code is human-readable & can be

‘interfered’ with
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Example GeNN model code

Definition of a neuron model

class LIF:public NeuronModels::Base

{

public:
DECLARE_MODEL(LIF,1,1);
SET_SIM_CODE("$(V)=($(Isyn)*$(TauM)x(1.0 —$(ExpTC)))+(S(ExpTC)*$(V)):\n"):
SET_THRESHOLD_CONDITION_CODE("$(V)>=1.0");
SET_RESET_CODE("$(V)=0.0;");
SET_PARAM_NAMES({ "TauM" });
SET_DERIVED_PARAMS ({

{"ExpTC" ,[](const vector<double> &pars,double dt)
{return exp(—dt/pars[0]):}}});

SET_VARS({{"V","scalar" }});

B

IMPLEMENT_MODEL(LIF);

Population creation

network.addNeuronPopulation<LIF>("pop" ,1000,params,initState);



New Developments
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GPU random number generation

1 __global  void initializeDevice()

|| g SESEIRES R {

14 const unsigned int id = 64 * blockIdx.x +
threadIdx.x;

L if (id < 1000) {

10 - curand_init(1234, id, 0, &dd_rng[id]);

Gsamples / sec

o N A O ©

dd VE[id] = curand uniform(&dd rng[id]); }

XORWOW Philox

= Uniform Distribution = Normal Distribution = Log-Normal Distribution
cuRAND 6.0 on K40m, ECC ON, double precision input and output data on device
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Initialising “fixed probability’
connectivity

e = Whether there is a

— LJ . i ‘_5:’. connection between any
— N e | pair of neurons can be
s e bve e e e el S modelled as Bernoulli

= = .' =1~ Distribution
T R Rt e . 6.4x10° ‘dice’ throws if
— B B B Bl B connecting 80x103

= neurons to themselves
— 1®°) [s ; o RS

et e m et L2 e nefficient for sparse

connectivity
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Initialising ‘fixed probability’ connectivity

= Alternative is to sample from the geometric distribution
Geom|[p]

= This distribution describes how many Bernoulli trials
until the next success

= The geometric distribution can be sampled in constant
time by inverting the cumulative density function (CDF)
of its equivalent continuous distribution (the
exponential distribution) to obtain for the ‘distance’ to
the next existing synapse log(Unif[0, 1])

A\ =
log(1 —p)

Devroye, L. (1986). Non-Uniform Random Variate Generation. New York: Springer. lE
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Initialising “fixed probability’
connectivity

4 0.;- o
2

= Generating fixed probability connectivity can now be
performed entirely in parallel by initializing each row of
connectivity using an independent CUDA thread lE
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Example GeNN connectivity model a-=

_ log(Unif]0, 1])

log(1 —p)

class FixedProbability: public InitSparseConnectivitySnippet: :Base

{

public:

s

DECLARE_SNIPPET(FixedProbability, 1);

SET_ROW_BUILD_CODE (
"const scalar u = $(gennrand_uniform);\n"
"prev] += (1 + (int)(log(u) * $(probLogRecip)));\n"
"if(prev] < $(num_post)) {\n"
" $(addSynapse, prev]);\n"
0"
"else {\n"
" $(endRow);\n"

"I\n");

SET_ROW_BUILD STATE_VARS({{"prevl", "int", -1}});

SET_PARAM_NAMES ({"prob"});

SET_DERIVED PARAMS({{"probLogRecip",
[ ](const std::vector<double> &pars, double)

{
return 1.0 / log(1.0 - pars[0]);
)



Example GeNN simulation code

#include "model CODE/definitions.h"
{

allocateMem();

initialize();

while(t < 100.0£) {
stepTimeGPU();

}

return 0:

Prof. Thomas Nowotny (@drtnowotny)

. e . UNIVERSITY
CCNR and Sussex Neuroscience, School of Engineering and Informatics  of sussEx



Microcolumn Benchmark
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MOde‘ Jamie Knight

1mm?3 of cortex
80x103 (LIF) neurons

0.3x10° (static) synapses o A
Probabilistic connectivity g
Weights and delays sampled from 4

normal distributions

%f \"‘ruE\ ‘
Recent benchmark l
NEST on HPC - 0.33 X real-time
(25kW) i
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Potjans, T. C., & Diesmann, M. (2012). The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-
Scale Spiking Network Model. Cerebral Cortex

Van Albada, S. J., Rowley et al. (2018). Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the
Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model. 1-20.



Simulation performance

300 e Using latest Volta

—_ GPUs, GeNN is
= 200 faster than HPC
-E 366 l I Consumer GPUs still
. faster than
0 .'-' - SpiNNaker and offer

significant speedup
over single CPU core

Jetson TX2
GeForce 1050ti
GeForce 1650

Tesla K40c
Tesla V100
Xeon E3-1240
HPC
(fastest)
SpiNNaker

B Neuron simulation B Overhead
mmm Synapse simulation (Time not spent in CUDA

kernels) lB
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Initialisation performance

104 » Rapid initialisation
o of simulations is
= important
e 10~
=

e Although
101 initialisation also
100 -I _l scales strongly on
HPC cluster, GPU

initialisation is still
faster

HPC (fastest) .

Jetson TX2
- GeForce 1050ti

Tesla K40c

Tesla V100

B GPU initialisation B CPU initialisation

US

Prof. Thomas Nowotny (@drtnowotny) T
CCNR and Sussex Neuroscience, School of Engineering and Informatics OF SUSSEX



Energy efficiency

Latest Volta GPU uses an  Device
order of magnitude less

Simulation energy
[kWh]

energy than CPU-based ~ GeForce 1050Ti
HPC and SpiNNaker Jetson TX2
Even though it's Tesla K40c
significantly slower,
Jetson TX2 remains very
energy efficient SpiNNaker

HPC (lowest energy)

Tesla V100 (estimated)

Prof. Thomas Nowotny (@drtnowotny)

0.0051
0.00078
0.0028
0.0012
0.017

0.012
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Publication

? frontiers

ORIGINAL RESEARCH
in Neuroscience 3389/nins. 2018.0

GPUs Outperform Current HPC and
Neuromorphic Solutions in Terms of
Speed and Energy When Simulating a
Highly-Connected Cortical Model

James C. Knight* and Thomas Nowotny

Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex, Brighton,
United Kingdom

While neuromorphic systems may be the ultimate platform for deploying spiking
neural networks (SNNs), their distributed nature and optimization for specific types
of models makes them unwieldy tools for developing them. Instead, SNN models
tend to be developed and simulated on computers or clusters of computers with
standard von Neumann CPU architectures. Over the last decade, as well as becoming a
common fixture in many workstations, NVIDIA GPU accelerators have entered the High
OPEN ACCESS Performance Computing field and are now used in 50 % of the Top 10 super computing
sites worldwide. In this paper we use our GeNN code generator to re-implement two
neo-cortex-inspired, circuit-scale, point neuron network models on GPU hardware. We

Edited by:
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The GeNN ‘ecosystem’
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Overview

Python
C++
Brian2 SpineCreator PyNN TensorFlow CUDA/C++
PYNN GeNN TensorGeNN
Brian2GeNN SpineML2GeNN PyGeNN
GeNN

C++ backend

CUDA backend

Prof. Thomas Nowotny (@drtnowotny)
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SpineML

SpineML is an XML-based description format for
networks of point neurons

It is a proposed extension of the NineML format, -
including the description of neural dynamics,

network structure, and experimental procedures.

SpineML acts as an exchange format between

Courtesy of Dr. Alex Cope

1 <SpineML
by 7y

me="TIF">
1 <AnalogReducePort reduce_op="+"
5 <EventSendPort name="spike"/>

[ <Parameter dimension="nF" name

<Parameter di
<Parameter dir
<Parameter dir
10 <Parameter din
11 <Parameter dir
12 <Parameter di

15 <StateVariable
16 <StateVariable
17 </Dynamics>

18 </ComponentClass>
19 </SpineML>

creation tools and simulators, as well as between
collaborators working on a shared model

For more details see:

Creation

]

SpineCreator

Exchange

dimension

"nA" name

"ms" name

limension

Simulation

"nV" n
"ms" na

2 Ilns="http://www.shef.ac.uk/SpineMLComponentLayer">
3 <ComponentClass na

name="I_Syn" dimension="nA"/>

"cm" />
"i_offset"/>
"v_thresh"/>
"v_rest"/>
"v_reset"/>
"tau_m"/>
1ir on name="tau_refractory"/>
<Dynamics initial_regime="integrating">

. Regimes ...

ime="y"/>
ne="t_spike"/>

Other creation tool (e.g.
text editor)

A

A

\ /

\ /

o8

BRAHMS

S\
28

PyNN

~ -

e

OO0

Richmond P, Cope A, Gurney K, Allerton DJ. "From Model Specification to Simulation of
Biologically Constrained Networks of Spiking Neurons" Neuroinformatics. 2013



. Courtesy of Dr. Alex Cope
SpineCreator

SpineCreator is one tool that can be used to
author SpineML models

A Graphical User Interface allows models to be
specified without any programming

Some features:

Graphing

3d visualisation

Extensible simulator support
Version control support

L 1T ——— - T S ST A T S ———————————— ]

2323x.

Available at
https://github.com/SpineML/SpineCreator



SpineML and GeNN

SpineML can use code generation for simulator support, so it is very easy to

add support for GeNN

Courtesy of Dr. Alex Cope

XSLT translation scripts transform the model into GeNN user files, and the
GeNN standard toolchain compiles and runs the simulation

Support for new neuron types (and soon synapses and weight update rules)
is supported through XSLT translation to GeNN system files

Creation

[

GUI Creator

=

Other creation tool (e.g.
text editor)

O
O
O

Exchange

Neurons

XML

GPU Simulation

nt

runner.cc

)

neuron
synapse
runner

userModel.cc (
E bneh
generateAll.cc
Generate runner,

Device Host
Code Code
(GPU) (CPU)

)

kernels, host and

3. execute
device code
T conmpile
generateAll
Lude

4. include

userSimulation.cc ) 4- include
.CcC
5. compile

userSimulation




Brian2GeNN interface

Brian is a popular simulator for neuronal networks
(http://briansimulator.org/)

Brian 2 is entirely code-generation based

Users are able to choose target devices,
including Python (as before), C/C++, Android and

GPU/GeNN
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http://briansimulator.org/

BRIAN2
from brian2 import *
from brian2.devices.genn import *
set_device('genn’);

H##### Define the model

tau = 10*msecond

egs = "’dV/dt = (-40*mV-V)/tau : volt # (unless-refractory)""
threshold = 'V>-50*mV"

reset = 'V=-60*mV'

refractory = 5*msecond

N = 1000

H#H####H# Generate genn code

G = NeuronGroup(N, eqgs, reset=reset, threshold=threshold,
name='gp')

M = SpikeMonitor(G)

G2 = NeuronGroup(1, egs, reset=reset, threshold=threshold,
name='gp2')

# Run the network for 0 seconds to generate the code

net = Network(G, M, G2)

net.run(1*second)



Brian2GeNN

Brian2GeNN: a system for accelerating a
large variety of spiking neural networks
with graphics hardware

Marcel Stimberg,! Dan F. M. Goodman,? Thomas Nowotny,**

October 19, 2018
'Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
?Department of Electrical and Electronic Engineering, Imperial College London, London, UK.
3Centre for Computational Neuroscience and Robotics, Sussex Neuroscience, School of Engineering and
Informatics, University of Sussex, Brighton, UK.

“To whom correspondence should be addressed; E-mail: t.nowotny@sussex.ac.uk.

“Brian” is a popular Python-based simulator for spiking neural networks, commonly
used in computational neuroscience. GeNN is a C+ +-based meta-compiler for ac-
celerating spiking neural network simulations using consumer or high performance
grade graphics processing units (GPUs). Here we introduce a new software package,
Brian2GeNN, that connects the two systems so that users can make use of GeNN GPU
acceleration when developing their models in Brian, without requiring any technical
knowledge about GPUs, C++ or GeNN. The new Brian2GeNN software uses a pipeline
of code generation to translate Brian scripts into C++ code that can be used as input
to GeNN, and subsequently can be run on suitable NVIDIA GPU accelerators. From
the user’s perspective, the entire pipeline is invoked by adding two simple lines to their
Brian scripts. We have shown that using Brian2GeNN, typical models can run tens to
hundreds of times faster than on CPU.

Introduction

Available on bioarxiv



Brian2GeNN performance
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Very large models can be simulated on single GPUs
Tesla GPUs perform well, even when double-precision accuracy is required

When models are large enough, higher performance can be achieved by
parallelising synaptic update over incoming spikes rather than

postsynaptic neurons. lE
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Future

= New backends
= OpenCL
= |ntel ISPC

" Going larger
= Support for NVLink multi-GPU systems
= Support for GPUDirect RDMA

" Going smaller
" Low-precision types reduce load on memory and memory
bandwidth and offer increased throughout on newer devices
= New backends may allow us to efficiently target devices too

small to have an NVIDIA GPU
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Some Conclusions

. Using a C++/CUDA code generation approach has
several advantages:

- Model specific optimisations at compile time
- Hardware specific optimisations at compile time

- Can provide unlimited number of different models but
actual simulations stay lean and mean

GeNN is freely extendible with few constraints

. Low level code is accessible if desired/needed
New hardware capability can be accommodated
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https://github.com/genn-team/genn

Other GPU solutions (here: Neural Networks)

. Nageswaran et al. (UC Irvine, 2009): General simulator for Izhikevich neurons
with delay, optimized for Izhikevich's thalamo-cortical model (C++ library)

. Fidjeland et al. (Imperial, 2010) - Nemo: General simulator for I1zhikevich
neurons with delay, optimized for Izhikevich's thalamo-cortical model (C++
library)

« Mutch et al. (MIT, 2010) CNS simulator: Simulator for layered “cortical
networks”, models can be defined by the user (used exclusively through a
MatLab interface)

« Minkovich et al., (HRL Laboratories LLC, 2013) HRLSim: A High Performance
Spiking Neural Network Simulator for GPGPU Clusters (LIF & Izhikevich)
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